Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Biophys Mol Biol ; 150: 13-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029570

RESUMO

Despite decades of focused research, a detailed understanding of the fundamental physical processes that underpin biological systems (structures and processes) remains an open challenge. Within the present paper we report on biomimetic studies, which offer new insights into the process of cell division and the emergence of different cellular and multicellular structures. Experimental studies specifically investigated the impact of including different concentrations of charged bio-molecules (cytokinin and gibberellic acid) on the growth of BaCO3-SiO2 based structures. Results highlighted the role of charge density on the emergence of long-range order, underpinned by a negentropic process. This included the growth of synthetic cell-like structures, with the intrinsic capacity to divide and change morphology at cellular and multicellular scales. Detailed study of dividing structures supports a hypothesis that cell division is dependent on the establishment of a charge-induced macroscopic quantum potential and cell-scale quantum coherence, which allows a description in terms of a macroscopic Schrödinger-like equation, based on a constant different from the Planck constant. Whilst the system does not reflect full correspondence with standard quantum mechanics, many of the phenomena that we typically associate with such a system are recovered. In addition to phenomena normally associated with the Schrödinger equation, we also unexpectedly report on the emergence of intrinsic spin as a macroscopic quantum phenomena, whose origins we account for within a four-dimensional fractal space-time and a macroscopic Pauli equation, which represents the non-relativistic limit of the Dirac equation.


Assuntos
Materiais Biomiméticos/química , Células/química , Células/ultraestrutura , Bário/química , Compostos de Benzil/química , Carbonatos/química , Divisão Celular , Simulação por Computador , Difusão , Giberelinas/química , Modelos Biológicos , Purinas/química , Teoria Quântica , Dióxido de Silício/química , Solventes/química
2.
Prog Biophys Mol Biol ; 123: 48-73, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639635

RESUMO

Based on laboratory based growth of plant-like structures from inorganic materials, we present new theory for the emergence of plant structure at a range of scales dictated by levels of ionization, which can be traced directly back to proteins transcribed from genetic code and their interaction with external sources of charge in real plants. Beyond a critical percolation threshold, individual charge induced quantum potentials merge to form a complex, interconnected geometric web, creating macroscopic quantum potentials, which lead to the emergence of macroscopic quantum processes. The assembly of molecules into larger, ordered structures operates within these charge-induced coherent bosonic fields, acting as a structuring force in competition with exterior potentials. Within these processes many of the phenomena associated with standard quantum theory are recovered, including quantization, non-dissipation, self-organization, confinement, structuration conditioned by the environment, environmental fluctuations leading to macroscopic quantum decoherence and evolutionary time described by a time dependent Schrödinger-like equation, which describes models of bifurcation and duplication. The work provides a strong case for the existence of quintessence-like behaviour, with macroscopic quantum potentials and associated forces having their equivalence in standard quantum mechanics. The theory offers new insight into evolutionary processes in structural biology, with selection at any point in time, being made from a wide range of spontaneously emerging potential structures (dependent on conditions), which offer advantage for a specific organism. This is valid for both the emergence of structures from a prebiotic medium and the wide range of different plant structures we see today.


Assuntos
Fenômenos Biofísicos , Plantas/metabolismo , Teoria Quântica
3.
Cells ; 3(1): 1-35, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24709901

RESUMO

We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space-or of the underlying medium-can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations-geodesic, quantum-like, fluid mechanical, stochastic-of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided.

4.
Prog Biophys Mol Biol ; 97(1): 79-114, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17991512

RESUMO

In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, and discuss how scale laws of increasing complexity can be used to model and understand the behaviour of complex biological systems. In scale relativity theory, the geometry of space is considered to be continuous but non-differentiable, therefore fractal (i.e., explicitly scale-dependent). One writes the equations of motion in such a space as geodesics equations, under the constraint of the principle of relativity of all scales in nature. To this purpose, covariant derivatives are constructed that implement the various effects of the non-differentiable and fractal geometry. In this first review paper, the scale laws that describe the new dependence on resolutions of physical quantities are obtained as solutions of differential equations acting in the scale space. This leads to several possible levels of description for these laws, from the simplest scale invariant laws to generalized laws with variable fractal dimensions. Initial applications of these laws to the study of species evolution, embryogenesis and cell confinement are discussed.


Assuntos
Algoritmos , Modelos Biológicos , Análise Numérica Assistida por Computador , Biologia de Sistemas/métodos , Simulação por Computador
5.
Prog Biophys Mol Biol ; 97(1): 115-57, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17991513

RESUMO

In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential applications for the analysis, engineering and management of physical and biological systems and properties, and the consequences for the organization of transdisciplinary research and the scientific curriculum in the context of the SYSTEMOSCOPE Consortium research and development agenda.


Assuntos
Algoritmos , Mecânica , Modelos Biológicos , Análise Numérica Assistida por Computador , Teoria Quântica , Biologia de Sistemas/métodos , Simulação por Computador
6.
C R Biol ; 325(5): 585-90, 2002 May.
Artigo em Francês | MEDLINE | ID: mdl-12187644

RESUMO

We suggest applying the log-periodic law formerly used to describe various crisis phenomena, in biology (evolutionary leaps), inorganic systems (earthquakes), societies and economy (economic crisis, market crashes) to the various steps of human ontogeny. We find a statistically significant agreement between this model and the data.


Assuntos
Evolução Biológica , Desastres , Comércio , Cultura , Economia , Fractais , Humanos , Modelos Biológicos , Mudança Social , Condições Sociais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...